1,730 research outputs found

    Array concepts for solid-state and vacuum microelectronics millimeter-wave generation

    Get PDF
    The authors have proposed that the increasing demand for contact watt-level coherent sources in the millimeter- and submillimeter-wave region can be satisfied by fabricating two-dimensional grids loaded with oscillators and multipliers for quasi-optical coherent spatial combining of the outputs of large numbers of low-power devices. This was first demonstrated through the successful fabrication of monolithic arrays with 2000 Schottky diodes. Watt-level power outputs were obtained in doubling to 66 GHz. In addition, a simple transmission-line model was verified with a quasi-optical reflectometer that measured the array impedance. This multiplier array work is being extended to novel tripler configurations using blocking barrier devices. The technique has also been extended to oscillator configurations where the grid structure is loaded with negative-resistance devices. This was first demonstrated using Gunn devices. More recently, a 25-element MESFET grid oscillating at 10 GHz exhibited power combining and self-locking. Currently, this approach is being extended to a 100-element monolithic array of Gunn diodes. This same approach should be applicable to planar vacuum electron devices such as the submillimeter-wave BWO (backward wave oscillator) and vacuum FET

    A dynamic method for magnetic torque measurement

    Get PDF
    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system

    Jarzynski equality for the transitions between nonequilibrium steady states

    Full text link
    Jarzynski equality [Phys. Rev. E {\bf 56}, 5018 (1997)] is found to be valid with slight modefication for the transitions between nonequilibrium stationary states, as well as the one between equilibrium states. Also numerical results confirm its validity. Its relevance for nonequilibrium thermodynamics of the operational formalism is discussed.Comment: 5 pages, 2 figures, revte

    Millimeter-wave diode-grid phase shifters

    Get PDF
    Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A Phase shift of 70° with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies form 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5-Ω series resistances would have a loss of 1.4 dB at 90 GHz

    Millimeter-Wave Diode-Grid Frequency Doubler

    Get PDF
    Monolithic diode grid were fabricated on 2-cm^2 gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5% and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 Ω, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage

    The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics

    Full text link
    The role of gradient dependent constitutive spaces is investigated on the example of Extended Thermodynamics of rigid heat conductors. Different levels of nonlocality are developed and the different versions of extended thermodynamics are classified. The local form of the entropy density plays a crucial role in the investigations. The entropy inequality is solved under suitable constitutive assumptions. Balance form of evolution equations is obtained in special cases. Closure relations are derived on a phenomenological level.Comment: 16 pages, 1 figur

    Nonequilibrium corrections in the pressure tensor due to an energy flux

    Full text link
    The physical interpretation of the nonequilibrium corrections in the pressure tensor for radiation submitted to an energy flux obtained in some previous works is revisited. Such pressure tensor is shown to describe a moving equilibrium system but not a real nonequilibrium situation.Comment: 4 pages, REVTeX, Brief Report to appear in PRE Dec 9

    Crystallization of Adenylylsulfate Reductase from Desulfovibrio gigas: A Strategy Based on Controlled Protein Oligomerization

    Get PDF
    Adenylylsulfate reductase (adenosine 5′-phosphosulfate reductase, APS reductase or APSR, E.C.1.8.99.2) catalyzes the conversion of APS to sulfite in dissimilatory sulfate reduction. APSR was isolated and purified directly from massive anaerobically grown Desulfovibrio gigas, a strict anaerobe, for structure and function investigation. Oligomerization of APSR to form dimers–α_2β_2, tetramers–α_4β_4, hexamers–α_6β_6, and larger oligomers was observed during purification of the protein. Dynamic light scattering and ultracentrifugation revealed that the addition of adenosine monophosphate (AMP) or adenosine 5′-phosphosulfate (APS) disrupts the oligomerization, indicating that AMP or APS binding to the APSR dissociates the inactive hexamers into functional dimers. Treatment of APSR with β-mercaptoethanol decreased the enzyme size from a hexamer to a dimer, probably by disrupting the disulfide Cys156—Cys162 toward the C-terminus of the β-subunit. Alignment of the APSR sequences from D. gigas and A. fulgidus revealed the largest differences in this region of the β-subunit, with the D. gigas APSR containing 16 additional amino acids with the Cys156—Cys162 disulfide. Studies in a pH gradient showed that the diameter of the APSR decreased progressively with acidic pH. To crystallize the APSR for structure determination, we optimized conditions to generate a homogeneous and stable form of APSR by combining dynamic light scattering, ultracentrifugation, and electron paramagnetic resonance methods to analyze the various oligomeric states of the enzyme in varied environments
    corecore